Ch. 3--Minerals

- What is a mineral?
 - Naturally occurring
 - Inorganic
 - Solid
 - Definite Structure
 - Definite Composition

5 Characteristics of Minerals

- 1. Formed by natural Processes
 - Cannot be man made
- 2. Inorganic
 - Usually doesn't contain carbon (some exceptions: ex. Diamond)
- 3. All are solids
 - Definite shape and volume
 - Liquids cannot be crystals

5 Characteristics of Minerals

- 4. All are an element or compound with an unique composition.
 - Ex. Rock Salt
- 5. Arranged in a pattern that is repeated over and over again.
 - $-\operatorname{Ex.}$ Graphite

6 Major Crystal Systems

Figure 3

- Example:
- ❖ Orthorhombic
- ❖ Monoclinic
- ❖ Tetragonal
- ❖ Triclinic

3 Ways Minerals Form

- 1. Cooling of molten material
- 2. Evaporation
- 3. Precipitation

3 Ways Minerals Form

- 1. Cooling of Hot molten material.
 - Magma cools
 - Atoms lose energy
 - Atoms move closer together
 - Atoms begin to combine to form compounds
 - Compounds arrange into repeating pattern.
 - What happens to the size of the crystals if the mineral cools quickly or slowly?

3 Ways Minerals Form

- 2. Formed from minerals dissolved in liquid. (Evaporation)
 - Liquid evaporates
 - Atoms in minerals stay behind
 - Atoms combine and form crystals

3 Ways Minerals Form

- 3. Precipitation
 - A solution becomes saturated OR
 - Another substance is added to a saturated solution.
 - Crystals begin to precipitate out of solution.

Mineral Compositions 90 elements naturally occur in the Earths crust. There are 4000 known minerals A few dozen are common. Most rock forming minerals are silicates— minerals containing oxygen

ID of Minerals--Hardness

- Hardness
 - Measure of how easily a rock is scratched by another rock.
- Mohs Hardness Scale
 - Developed by Frederich Mohs to compare the hardness of 10 minerals
 - We have minerals of known hardness, everything is compared to these 10.
 - Scale is 1 to 10
 - Softest Mineral
 - Hardest Mineral

A way to remember the order

and silicon

The Geologist Can Find A Funky Quartz, Tourists Call Diamond!

Mohs Hardness Scale

- Mohs Hardness Scale
 - 1—Talc
 - 2—Gypsum
 - 3—Calcite
 - 4—Fluorite
 - 5—Apatite
 - 6—Feldspar
 - 7—Quartz
 - 8—Topaz
 - 9—Corundum
 - 10—Diamond

- FingernailCopper Penny
- Iron Nail
- Glass
- Steel File
- Streak Plate

Absolute Hardness Scale

- 1—Talc
- 3—Gypsum
- 9—Calcite
- 21—Fluorite
- 48—Apatite
- 72—Feldspar
- 100—Quartz
- 200—Topaz
- 400—Corundum
- 1600—Diamond

ID of Minerals--Luster

 Describes how light is reflected from a minerals surface.

ID of Minerals--Color

• Color: The appearance of a mineral in it's non-powdered form.

ID of Minerals--Streak

- Streak: color of a mineral when it is powdered.
 - We use a streak plate (unglazed porcelain plate)
 - Ex. Pyrite

ID of Minerals--Breakage

- The way a mineral breaks.
 - Cleavage: if a mineral breaks along smooth, flat surfaces.
 - Fracture: if a mineral breaks rough and jagged.
 - Ex. Quartz
 - Ex. Halite

ID of Minerals—Magnetic

- Some minerals are magnetic.
 - Ex. Magnetite

ID of Minerals—React With Acid

- Calcite will react rapidly in contact with hydrochloric acid, causing effervescense (bubbles) and the release of carbon dioxide gas.
- CaCO₃ + 2H⁺ -----> Ca⁺² + H₂O + CO₂ (a gas)
- This is a Chemical Property!!!

ID of Minerals—Ability to Bend Light

• Calcite can bend light.

ID of Minerals--Fluorescent

 The fluorescent minerals are minerals that emit visible light when activated by invisible ultraviolet light (UV), X-rays and/or electron beams. Certain electrons in the mineral absorb the energy from these sources and jump to a higher energy state. The fluorescent light is emitted when those electrons jump down to a lower energy state and emit a light of their own.

Fluorescent • Fluorite • Gypsum • Calcite • Apatite

Uses of Minerals--gems

- · Gems (gemstones)
 - Highly prized minerals because they are rare and beautiful.
 - Gem (brighter/colorful) vs. common form
 - The difference may be slight
 - May be color
 - Ex. Amethyst vs. Quartz

Uses of Minerals--gems

· Ruby vs. Sapphire vs. Corundum

Uses of Minerals—gems

Emerald vs. Beryl

Important Gems

 Hope Diamond—beginning in 1668, was part of the French crown jewels, associated with a curse—45.52 carats.

 Cullinan diamond—found in South Africa in 1905, the largest uncut diamond ever discovered on Earth—3,106.75 carats.

Uses of Minerals—Ores

 Minerals that contain a useful substances that can be mined for a profit.

- These products are worth more money than the cost of mining them.
- •Ex. Bauxite (aluminum)
- Must be processed or refined into a more useful form.
- Ex. Hematite (iron)

Uses of Minerals—Titanium

- Durable, non-toxic, lightweight metal derived from minerals such as ilmenite or rutile.
- · Do you own anything made of titanium?
- · Uses:
 - Tennis Rackets
 - Golf Clubs
 - Racing Bikes
 - Hip Replacements
 - Aircraft Parts
 - Automobile parts (valves, suspensions)
 - Razor Blades

Refining Titanium

Ilmenite Ore

Ilmenite + Sulfuric Acid → Titanium Dioxide + Iron Sulfate

 Note: Iron Sulfate is dangerous to the environment so this method is not preferred.

Rutile Ore

Rutile + chlorine + high temp → Titanium Tetrachloride (TiCl₄)
Rutile contains a higher concentration of titanium.